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Reasoning to a Foregone Conclusion 

Joseph B. KADANE, Mark J. SCHERVISH,and Teddy SEIDENFELD 

When can a Bayesian select an hypothesis H and design an experiment (or a sequence of experiments) to make certain that, given 
the experimental outcome(s), the posterior probability of H will be greater than its prior probability? We discuss an elementary 
result that establishes sufficient conditions under which this reasoning to a foregone conclusion cannot occur. We illustrate how 
when the sufficient conditions fail, because probability is finitely but not countably additive, it may be that a Bayesian can design 
an experiment to lead his/her posterior probability into a foregone conclusion. The problem has a decision theoretic version in 
which a Bayesian might rationally pay not to see the outcome of certain cost-free experiments, which we discuss from several 
perspectives. Also, we relate this issue in Bayesian hypothesis testing to various concerns about "optional stopping." 

KEY WORDS: Coherence; Finite additivity; Sequential tests; Stopping rules; Value of information. 

1. INTRODUCTION 

In a lively (1962) discussion of some foundational issues, 
several noted statisticians, especially L. J. Savage, focused 
on the controversy of whether an experimenter's stopping 
rule is relevant to the analysis of his or her experimental 
data. Savage wrote (1962, p. 18). 

The [likelihood] principle has important implications in connection with 
optional stopping. Suppose the experimenter admitted that he had seen 6 
red-eyed flies in 100 and had then stopped because he felt that he had 
thereby accumulated enough data to overthrow some popular theory that 
there should be about 1 per cent red-eyed flies. Does this affect the inter- 
pretation of 6 out of 100? Statistical tradition emphasizes, in connection 
with this question, that if the sequential properties of his experimental 
programme are ignored, the persistent experimenter can arrive at data that 
nominally reject any null hypothesis at any significance level, when the 
null hypothesis is in fact true. These truths are usually misinterpreted to 
suggest that the data of such a persistent experimenter are worthless or 
at least need special interpretation; see, for example, Anscombe (1954), 
Feller (1940), Robbins (1952). The likelihood principle, however, affirms 
that the experimenter's intention to persist does not change the import of 
his experience. 

The tradition Savage refers to is, in a paraphrase of 
Anscombe (1954), Feller (1940), Robbins (1952), and Corn- 
field (1970), captured by the following imaginary circum- 
stance. Suppose that a statistician has his designs on reject- 
ing the null hypothesis Ho:H = O! that the mean of iid nor- 
mal data is zero. The data have known unit variance. Fix k, 
so that k, /Jn corresponds to the nominal rejection point 
in an a-level uniformly most powerful unbiased (UMPU) 
test of Ho versus the composite alternative hypothesis H i :  
H # 0, based on a sample of size n .  Let Ht denote the 
simple hypothesis that Q = t . Continue observing data until 
the sample average, Zt., = ( x l  + . .  . + x,)/n, satisfies the 
inequality (I),  then halt: 

The likelihood principle entails that the statistician's in- 
tent to stop only when (1) obtains is irrelevant to the "ev- 
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idential import" of the data for hypotheses about 8.(See 
Berger 1985, sec. 7.7 for a recent view.) If, contrary to 
traditional theory, significance is calculated independent of 
the stopping rule for the experiment-a mistake by tradi- 
tional theory-then when the inquiry halts, Ho has achieved 
an observed significance of a! or less. Moreover, given the 
truth of Ho,by the law of the iterated logarithm, with proba- 
bility 1 the experiment terminates; that is, almost surely the 
inequality (1) is eventually satisfied. 

In response to this tradition, Savage asserted (1962, p. 18) 

The true moral of the facts about optional stopping is that significance 
level is not really a good guide to "level of significance" in the sense of 
"degree of import," for the degree of import does depend on the likelihood 
alone, a theme to which I must return later in the lecture. 

And later in the discussion (1962, p. 72), 

It is impossible to be sure of sampling until the data justifies an unjus- 
tifiable conclusion, just as surely as it is impossible to build a perpetual 
motion machine. After all, whatever we may disagree about, we are surely 
agreed that Bayes's theorem is true where it applies. 

We begin our inquiry by reviewing some of the details 
for what we guess Savage meant as the evident import of 
Bayes's theorem for solving the problem of sampling to 
a foregone conclusion. Because we find that the Bayesian 
position on forgone conclusions is complicated by mathe- 
matical conditions that are important for statistics, we re- 
hearse the following arguments, even though their conclu- 
sions have been in the literature before (see, e.g., Kerridge 
1963). 

Let ( S ,A, P )  be a (countably additive) probability space, 
which we think of as the underlying joint space for all quan- 
tities of interest. Expectations are with respect to the prob- 
ability P. Unconditional expectation is denoted by E ( . ) ,  
and conditional expectation given a random variable X is 
denoted by E( . IX) .Let ( X ,B)  and ( R ! T )be measurable 
spaces where 

X :  S +X is a random quantity to be learned, 
O: S i R is any random quantity, 

and h: R  + R* is an (extended) real-valued function 
whose expectation E ( h ) exists. 
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Then the familiar law of total probability implies that 

(see, e.g., ~ s h . 1 9 7 2 ,  T.6.5.4, p. 257). 
This says, in short, that there can be no experiment with 

outcome X designed (almost surely with respect to P )  to 
drive up or drive down the conditional expectation of h ,  
given X .  Of course, Equation (2) has no special logical 
dependence on Bayes's theorem, except that non-Bayesian 
statistical methods often begin with the claim that neither 
the "prior" expectation E ( h ( O ) )nor the "posterior" expec- 
tation E ( h ( O ) l X )has objective status. 

As an example, suppose that h is the indicator for an hy- 
pothesis H (an unobserved "event") in R ;  that is, h ( O )= 1 
if O E H ,  h ( O )  = 0 otherwise. Thus E ( h ( O ) )is the "prior" 
probability of H ,  denoted by P ( H )  = p. Let X I ,X 2 , .  . . 
be observations that become available sequentially. To con- 
sider experimental designs that mandate a minimum sample 
size, k > 0 , define 

N = i n f { n> k:  P ( H I X 1 , . . . , X,) 2 q) ,  

where N = oo if the set is empty. That is, N identifies 
the first point after the kth in the sequence of Xi obser-
vations when the "posterior" probability of H reaches q, 
at least. The event N = rn obtains when, after k-many 
observations, the sequence of conditional probabilities, 
P ( H I X 1 ,. . . ,X,) (n> k ) ,  all remain below q. We assume 
that q > p. 

Let Fx,, , , , ,x, ,N(.IN = n) denote the conditional cdf of 
( X I , .. . ,X,), given that N = n .  Then, 

= q P ( N  < oo).  

Hence 

Thus, when p < q, the prior probability is less than 1 
that a Bayesian will halt the sequence of experiments and 
conclude that the posterior probability of H has risen to 
q (at least). Moreover, by Doob's martingale convergence 
theorem (thm. 7.4.3, 1953), lim,,,{P(HIX1, . . . ,X,)) 
converges ( P  almost surely). Thus for ( P  almost all) in- 
finite sequences ( x l ,. . .) E ( N  = oo), we have that 
P ( H 1 ( x l ,. . .)) Iq. Hence the prior probability is less than 
plq a Bayesian will conclude that the posterior probability 
of H is more than q. This result obtains no matter which ex- 

perimental design is adopted and allows for "infinite" sam- 
ples, but it relies on Bayes's rule for updating a prior to a 
posterior. 

The same argument provides a bound for the conditional 
probability of terminating the experiment in finite time, 
given that H is false. Assume that P ( H ) < 1 and write 

P ( 1 H I N  < o o ) P ( N < oo)
P ( N  < W I T H ) = 

P ( 1 H )  

Note three facts: that P ( 1 H I N  < co) 5 1-q by the design 
of the experiment, that P ( N  < co) 5 plq as just shown, 
and that P ( 7 H ) = 1- p by assumption. Then, 

For example, assume that 0 < p j .1 and let qlp = 10. That 
is, by the choice of the stopping rule, if the experiment 
terminates, then the posterior probability for H increases 
tenfold (at least). Then the inequality (4) asserts the follow- 
ing: Given that H is false, the conditional probability of 
terminating the experiment is no more than (.1-p ) / ( l  -p) 
< . l .  

Savage (1962, pp. 72-73) offered a similar conclusion and 
illustrated with a simple case of two binomial hypotheses. 
Kerridge (1963) derived the same bounds as in (4) for the 
case of a uniform prior ( p = . 5 ) .  Cornfield (1970, pp. 20- 
21) used Kerridge's inequality to argue that as a Bayesian, 
you cannot be sure to defeat a true "null" hypothesis. 

However, with extended Bayesian methods based on so- 
called "improper" priors, the situation is complicated. The 
following example reveals how one type of improper prior 
leads to a violation of (3) through the formal application 
of Bayes's theorem. Examples of this type exist with other 
sorts of data distributions as well. 

Example 1.1. Let X and Y be independent Poisson ran- 
dom variables with X having mean 0 and Y having mean 
X0. Let the prior be the product of the "flat" improper prior, 
the Lebesgue measure for A, and the proper prior gamma 
(2, 1) distribution for 0. Suppose that we observe Y = y 
first. The product of the prior and likelihood densities is 

f ( y ,  0 ,  A) = exp[-0(X + l)](OX)YO/y!.  

The integral of f ( y ,  0 ,  A) with respect to X is g(y ,  0 )  = 
exp[-01, and the integral of g(y,  0 )  with respect to 0 is 1 
for all y. Thus a formal application of Bayes's theorem with 
this improper prior for X yields the gamma (1, 1) posterior 
(marginal) density of 0 , given Y = y. That is, the posterior 
density h(01Y = y)  = g(y,  0 )  = exp[-01, for all possible 
values y. Hence we know before observing Y that the pos- 
terior on 0 will be different from the prior on 0 and will 
not depend on the value of Y in fact observed. This is an 
illustration of a foregone conclusion. 

Now consider the distribution of X .  Prior to observing 
Y = y, we can calculate 
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After observing Y = y, because X and Y are independent 
given the parameters, we have 

no matter what value y is. That is, we know now that after 
we observe Y = y (and assuming that we use the formal 
Bayes's theorem to update our beliefs), regardless of what 
y is, we will assign { X  = 2) a probability that is 2/3 the 
size of its prior probability. Thus we have reasoned to a 
foregone conclusion about the observable event { X  = 2) 
in addition to a foregone conclusion about the unobserved 
parameter 0. 

Next, we begin an explanation of how improper priors 
can admit such reasoning to a foregone conclusion. 

2. THE ROLE OF FINITE ADDITIVITY 
IN FOREGONE CONCLUSIONS 

2.1 	 Finite Additivity Allows Experimentation to 
Foregone Conclusions 

If the probability P is merely finitely additive and not 
countably additive, then (3) and (4) are not valid. That is, 
with a finitely additive P, it is possible for a Bayesian agent 
to design an experiment that surely terminates in foregone 
conclusions. The following illustrates the key phenomenon, 
what deFinetti (1974) called "non-conglomerability." 

Let P be a (finitely additive) probability defined on the 
algebra A. Denote expectation with respect to P by E p [ . ] .  
Subject to the usual account of finitely additive condi- 
tional probability given a o algebra, denote the P expec-
tation given X by Ep[ . IX] .(See Dubins 1975, sec. 3, and 
Schervish, Seidenfeld, and Kadane 1984, p. 213 for some 
discussion of existence of coherent conditional finitely ad- 
ditive probabilities.) 

Definition (deFinetti). P is conglomerable in the (de- 
numerable) partition X = { x l , .. .) if for every bounded 
random variable Y and constants kl and k2! 

kl 5 E p [ Y ]5 k2 whenever kl I EP[YIX= x,]Ik2 

Example 2.1 (Dubins 1975). Let the set S be the prod- 
uct of a binary event { E ,  E c )  and the countably infinite 
space of natural numbers, X = {1 ,2 ,. . .).(We identify the 
events with their indicator functions.) Let the algebra A 
be the a field of all subsets of S. Define a finitely addi- 
tive P by P ( E )  = P ( E C )= .5; P ( X  = i lE) = 2-i; and 
P ( X  = i lEc)= 0. That is, given E ,  X  is the random vari- 
able corresponding to the selection of an integer by flip- 
ping a fair coin until the first "head" results, assuming that 
eventually the coin lands heads up. Given Ec,  X  is a "uni- 
formly" chosen positive integer. Then, in violation of con- 
glomerability, P ( E )  = .5 yet P(EIX = i )  = 1, regardless 
of the observed value (i = 1!. . .). The experimenter who 
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has the personal probability P recognizes that, given each 
finite sequence of coin flips, E is practically certain. 

When probability is updated by Bayes's rule of condi- 
tional probability, the experiment X makes E a foregone 
conclusion, contrary to the findings in Section 1. In expla- 
nation of what goes wrong with the reasoning from Sec- 
tion 1 applied to merely finitely additive probabilities, non- 
conglomerability creates a failure of the equality (2) with 
respect to the conditional probability P(EIX = i ) .Specifi-
cally, E p [ E ]= .5, but Ep[EIX = xi] = 1 (i = 1, . . .). Evi-
dently, the door to foregone conclusions is opened whenever 
P is not conglomerable. Moreover, in this example the con- 
ditioning events all have positive probability, P ( X  = i )  = 

2-@+ ' 1  > 0. There is no issue of conditional probability 
given events of zero measure to bother with. Bayes's the- 
orem applies without any extra conditions; nor is a special 
sequential argument needed. The "foregone conclusion" E 
is arrived at after a single trial of the experiment X .  

In earlier work (Schervish et al. 1984) we investigated 
when, and by how much, finitely additive probabilities are 
nonconglomerable for events. In short, unless P is count- 
ably additive, there is a denumerable partition X and event 
E for which the conditional probability P ( E X ) is to one 
side of P ( E )and bounded away from it. If the data to be ob- 
served specify uniquely a member of that partition, then the 
anomalous behavior of Dubins' example is recreated. (Of 
course, when P is countably additive, conglomerability is 
satisfied in every denumerable partition.) Then, as merely 
finitely additive probabilities display nonconglomerability 
in predictable ways, are agents whose personal probabili- 
ties are not countably additive open to the criticism that they 
accept sampling to foregone conclusions? Contrary to the 
views of deFinetti (1974) and Savage (1954), is countably 
additivity a requirement for a coherent personal probabil- 
ity? Is countable additivity justified to avoid sampling to a 
foregone conclusion? In Sections 2.2, 2.3, and 2.4 we con- 
sider alternative views about finitely additive probability to 
determine whether they endorse reasoning to foregone con- 
clusions. 

2.2 	 Finite Additivity and the Value of Experimentation 

Can it be that a Bayesian would rationally pay not to see 
the results of a cost-free experiment before making a de- 
cision? A classic result of Bayesian decision theory (Good 
1967; Raiffa and Schlaifer, 1961, sec. 4.5.2; Ramsey 1990) 
is that cost-free evidence is worth waiting for in advance of 
making a terminal decision. If it does not cost anything to 
postpone a decision to conduct a (free) experiment, then, ex 
ante, delaying the decision to learn something new carries 
higher expected utility than choosing to act at once. The 
following is a formalization of this claim. 

Suppose that a Bayesian agent has the opportunity now to 
postpone a terminal decision D E D,without penalty. Sup- 
pose also that the Bayesian agent has the chance to acquire, 
cost-free, new evidence X from a (finite) experiment before 
choosing among the same terminal decisions in D.Assume 
that the agent uses Bayes's rule to update and knows this of 
himself or herself. (As is shown in Sec. 2.3, this turns out 
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to be an important premise for the conclusion that follows.) 
Then, the current value of deferring the terminal decision 
until after the experi~nent is ob5erved is not less than the 
currert value of rnaking a terrninal decision at once. 

E.wnzple 2.2. Consider a binary decision problem: two 
terminal decisions, Dl and D2. on a binary state space 
E and its complement E c .  The terminal acts are func-
tions from states to outcomes. defined in the usual way: 
D , ( E )  = oI l  and D,(E' )  = o12ji = 1 .2 ) .  The Bayesian 
agent carries one personal probability P over the events 
and one utility C;(O,,~)= n,, over outcomes and seeks to 
maximize (conditional) expected utility. Assume, for con- 
venience. that the agent judges the acts and states are 
probabilistically independent. E'(s, ,  D L )= P(s, , ) .Thus de- 
note by E12(ul,)the agent's expected utility for choosing 
D l .  C,P(s , l )  1 ~ , , ~ .In a terminal decision. now, the agent max- 

Tllrorenz 2.1 

(a) 	 IE p [ m a x ~ E , (1 , ) u,,l 
(b) Provided that no single act in 2, ~nax~mizesthe 

conditional expected utility. El,( 1 , ) n,, for each outcome .r , 
then X < E,[l1l,ixDE,(1 ,) t ~ , , ]  

Part (a) asserts that, ex ante, the value of waiting for the 
outcome S is not less than that of maximizing utility by 
choosing without first learning X. Part (b) asserts that, pro- 
vided that the choice given X depends on how the experi- 
ment turns out. it is strictly better to await the new evidence 
before deciding between Dl and D2. 

Of course, because X has only finitely many possible 
outcomes and because the state space associated with the 
terminal options is finite ( E ,E'). the law of total proba- 
bility obtains. Let i be fixed, corresponding to choosing a 
particular act D l .  Then E P I E p ( . i , ) ~ , l ]  In other = E p r ~ , ~ .  

= X.. words. there is no utility difference for the Bayesian be- irnizes expected utility. Say that ~ ~ ~ R x ~ E ~ ( I I , ~ )  
Allow a binary experiment. X = {.rl. .r2}. followed by 

a choice between Dl and D2. (Because the outcome space 
is finite, these is no issue of countable additivity of P.) 
Assume that there is no cost for postponing the terminal 
decision-the utility of outcomes is unaffected by the ex- 
periment. The extensive form decision is depicted in Fig- 
ure 1 .  

Denote by n laxDEp( .~,I u , ,  the maximum conditional ex- 
pected utility of choosing between Dl and D2. given X = 

.c. The following result was reported by Good (1967), Raiffa 
and Schlaifer (1961), and Ramsey (1990). 

O12 	if EC o,, if i? if E 
O21 

if E 

O i l  	 a x p e r i m e n f )  

O I Z  if EC defer choice 

Figure 1.  Extensive Form for the Sequential Decision Whether or not 
to Experiment and Observe, Cost Free, the Binary Random Variable X 
Prior to Choosing Between the Terminal Decisions Dl and Dp. Following 
standard notation, boxes denote choice nodes and ovals denote chance 
nodes. The payoff structure of each terminal option is provided at the 
end of the corresponding branch of the decision tree. The first line gives 
outcome when event E occurs: the second line gives outcome when 
event EC occurs. 

tween a simple sequential decision problem expressed in 
normal or in extensive form. However, when the experi- 
ment X is not simple and P is merely finitely additive, the 
law of total probability may fail and there is the possibil- 
ity that the agent will prefer, strictly to decide without first 
learning X. In fact, the experiment X may carry negative 
value. 

E,~ntnple2.2 (continued. itself a continuation of Example 
2.1). Suppose that Dl is a 2:l bet on event E with stake 3 
utiles. 1111 = 1. 1112 = -2. Suppose that D2 is an even-odds 
bet against E with stake 2 utiles. 1 1 =~ ~ =- 1 . 1 1 ~ ~1.  What 
if the agent has the opportunity of postponing a terminal 
choice between these two options to learn the outcome of 
the experiment X? Then, ex ante. Dl carries negative ex- 
pected utility ( E p ( D l )= - . 5 ) .  whereas D2 has expected 
utility zero. That is, D2 maximizes expected utility. given 
what the agent knows now. However, given X = .c, (be-
cause P ( E . r i )= 1.i = 1.2). the conditional expected util- 
ity of Dl is 1. whereas the conditional expected utility of 
D2 is -1. 

Thus the agent knows that if the choice to maximize ex- 
pected utility is deferred until X is learned, then Dl will 
be chosen for certain. But the current value (the value now) 
of deferring this sure choice of Dl is -.5. Hence. ex ante, 
the value of waiting to see X and then choosing is -.5. 
whereas the value of choosing now (the value of choosing 
D2) is zero. When finitely additive probability is updated 
by Bayes's rule. it inay be better to avoid learning X than 
to postpone and face a foregone conclusion. The foregone 
conclusion leads to a choice now judged to be inferior to a 
current option. 

There have been two important earlier attempts to miti- 
gate the disruption to Bayesian theory caused by finite addi- 
tivity. The next two sections take up each of these attempts 
in turn. 

2.3 	 Some Consequences of Goldstein's Theory for 
Finitely Additive Probability 

Here. we consider what Goldstein's (1 983) theory has to 
say about the problem of reasoning to a foregone conclu- 
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sion with finitely additive probability. Specifically, we apply 
his theory to Example 2.1. We think that it is important to 
review Goldstein's work because his result, ( 3 ,  appears to 
deny what we assert about the possibility of reasoning to 
a foregone conclusion when probability is only finitely ad- 
ditive. We show that Goldstein's theory requires giving up 
Bayes's conditioning as the rule for updating opinion and, 
in fact, any rule for updating that is a function of the data. 

Let the current prevision for a quantity Z be denoted by 
PN(Z),where the subscript N indexes the time now. Also, 
let PF(Z)denote the future prevision for Z with respect to 
some well-defined future time F,later than N.Goldstein 
used sequential decision reasoning to argue that so-called 
"G coherence" of the previsions entails the equality 

That is, without regard for what one might learn between 
now and later, and without assuming how one updates future 
opinions, if each of the current and future previsions is G-
coherent, then the current prevision of Z must equal the 
current prevision of future prevision of Z. 

In short, Goldstein's result, ( 3 ,  establishes that one can- 
not (now) expect that the future previsions will suffer a 
foregone conclusion, regardless of how one plans to stop 
experimenting. But Goldstein maintained that his theory 
is consistent with an agent holding (merely) finitely ad- 
ditive previsions, just as deFinetti allowed. How can this 
be when, as in Example 2.1, finitely additive probabilities 
open the door to foregone conclusions? The answer in short, 
we think, is that Goldstein's theory prohibits updating by 
Bayes's rule (in Eq. 2.1). Here is our analysis. 

Suppose that we know now that we will observe X before 
we need to express PF (E), but that we are unsure what the 
total future evidence might be. We might also learn other 
information, but we are certain by the future time F to 
learn at least X and, we know this now, at N. In this case 
we can extend (5) to include some conditional previsions. 
Specifically, 

follows within his theory, by the same reasoning that he 
uses to derive (5). Recall that in Example 2.1, the current 
probability for the event E is nonconglomerable in the X 
partition is PN (E) = .5,yet PN (EIX = k)= 1 (k= 1,. . .). 
Then, by (61, 

Because 0 < PF(E)< 1,(7) asserts that 

From (5) and (a), it follows that one now believes with 
probability .5 that PF(E)will be near zero. 

Claim. 

Proof Note that 
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-EIX= k)P~(x= k)) 

The inequality follows by subadditivity of finitely additive 
probability. The first equality follows from (8). But, by ( 9 ,  
PN(PF(E)) <= .5;hence (for all E > 0)PN(O< PF(E) 
E) = .5. 

To discuss the variety of rules permitted in Goldstein's 
theory for updating probabilities, suppose that between 
now, N, and the future, F,one learns only the new infor- 
mation X.This simplification avoids unnecessary compli- 
cations about what later is the totality of the new evidence 
learned. 

It is evident that, because of ( 3 ,  in Goldstein's theory 
Bayes's rule is not (now) an authorized rule for updating 
your previsions at the later time F.Specifically, Bayes' rule 
mandates that when X is all the new evidence acquired 
between N and F, 

But as PN(E IX = k) = 1 (k= 1,. . .), under Bayes's rule 
for updating, PF(E)= 1.If one knows now that (10) ap- 
plies, then .5 = PN(E)# PN(PF(E))= 1,contradicting 
(5). Hence, in Example 2.1, Bayes' rule is G incoherent for 
updating in light of the new information X.In fact, for this 
example, we show shortly that every rule that is a function 
of X is also G incoherent for updating. 

Recall that we are examining the special case where one 
currently believes that X is all the relevant information that 
one will learn between now and the future time F when 
one must assess the prevision for event E.In that case, one 
currently believes (9); namely, that with probability .5, later 
one will depart in an extreme way from using Bayes's rule 
to update the prevision for E.Later, one will assign to E 
a prevision that is maximally far from what Bayes's rule 
prescribes. 

If we suppose that there is a rule for determining PF(E) 
that is a function of X alone, then the event {PF (E) < E) 
is also an event of the form {X E B},where B is a set of 
integers. (This is just what is ordinarily meant by saying that 
PF(E)is a function of X alone.) Because PN(X= k) > 0 
for all k,then for each k E B, PN(PF(E) < E& X = k)= 

PN (X E B& X = k) = PN (X = k) > 0.But this last 
inequality implies that PN (PF (E) < E /X = k) = 1,which 
contradicts (8). 

For example, let D, be the event {X > m).It is easy 
to calculate that PN(EID,) = (1+ 2,)-l. One might 
contemplate choosing some large integer m and setting 
PF (E) = PN (EID,) if D, occurs and setting PF (E) = 

PN(E(D&)= 1 if the complement of Dm, (D& = {X < 
m})occurs. If (I + 2,)-' < E, then this rule corresponds 
to {PF(E)< E}= {X > m),and (8) is violated for each 
value k > m.One might wish to take the (pointwise) limit 
of these rules as m goes to infinity. It is easy to see that 
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amounts to using Bayes's rule, which is also G incoherent. 
How strange it is that G coherence compels one to antici- 
pate changing one's previsions in a manner that is not ex- 
pressible as a function of the new evidence X that one will 
acquire between N and F. If it comes to pass that one does 
choose P F ( E )close to zero, then we would be interested 
to hear an explanation of why one made such a choice. 

The preceding example is typical of what happens in 
Goldstein's theory when a finitely additive probability is 
nonconglomerable in the margin of the data X. It is straight- 
forward to show that if G coherence is to accommodate 
the simple situation where the data have positive probabil- 
ity, then either G coherence requires that finitely additive 
probabilities be conglomerable in the margin of the data to 
be observed, or it requires that future previsions not be a 
function of the data that we know now that we will observe. 
Next we turn to a theory of finitely additive probability that 
incorporates the first of these two alternatives. 

2.4 	 Heath-Sudderth Coherence and Reasoning With 
Finitely Additive Probability 

Heath and Sudderth (1978) proposed a theory of finitely 
additive probability based on their own account of (what we 
call) H-S coherence. Theirs is a local (rather than global) 
decision criterion involving wagers on select parameters of 
interest O and quantities to be observed X .  An agent is 
required to indicate conditional fair odds over the sample 
space X ,  given each 6' E 0,and conditional fair odds over 
O, given each possible observation x E X .  Usually, a statis- 
tical "model" fixes conditional probability over the sample 
space, P(XIO),which determines the fair odds for X given 
O. Thus only the agent's "posterior7' odds, P(Olx) ,are open 
for specification. 

Let the function sIx=,[IA - P(AIx)] be a (called-off) 
bet on event A,  given X = x ,  at the agent's conditional 
odds P(AIx) ,  with total stake s. Thus the agent wins 
5-11-P(Alx ) ]if both X = x and event A obtains, the agent 
loses s P ( A J x )if both X = x and event A" obtains, and 
the bet is annulled if X # x.  For each possible outcome 
x E X ,  let B, be a finite selection of bets on events involv- 
ing O (i.e., finitely many bets on subsets of O ) using the 
agent's posterior odds P(Ojx) ,and let B be the system of 
these bets taken together. H-S coherence requires that there 
be no such system of bets B that have a negative risk; that 
is, no B with supe,, Ep(Bl6')< 0 .  

Heath and Sudderth showed (1978, Theorem 1) that H-S 
coherence is equivalent to the existence of a finitely additive 
probability P over the joint space, ( X ,0) ,such that for each 
bounded (measurable) function h ( X ,0) ,  

That is, for the agent to be H-S coherent, the finitely ad- 
ditive odds must be conglomerable in the X partition and 
in the O partition. More precisely, (11) requires that the 
finitely additive probability p be disintegrable in both parti- 
tions. Dubins (1975 Theorem 1) established equivalence of 
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disintegrability in a partition and conglomerability in that 
partition. 

Heath and Sudderth's sense of "coherence" is to be con- 
trasted with, for instance, deFinetti's criterion of avoiding 
a sure loss. deFinetti's criterion requires only that there be 
no finite set of fair unconditional, or called-off bets that 
lead to a negative outcome (rather than negative expecta- 
tion), bounded below zero, no matter which state (say, no 
matter which 6') obtains. To see the difference, Heath and 
Sudderth's system of bets B includes betting on O given X ,  
whereas deFinetti7s indexes these as infinitely many called- 
off bets if X takes on more than finitely many different 
values. A probability P may support "coherent" fair odds 
in deFinetti's sense but fail to be H-S coherent-the finitely 
additive probability of Example 2.1 is one such P. It is ev- 
ident that if a system of "fair" odds is incoherent in de- 
Finetti's sense, then it is H-S incoherent too. In Example 
2.1, event E is the subject of wagering and X is the quantity 
to be observed. The finitely additive probability P has the 
property that .5 = E p  [El # E p [ E p  [EIX]]  = 1; hence that 
P is H-S incoherent though coherent in deFinetti7s sense. 

When a finitely additive probability is H-S coherent, 
there can be no experiment the agent designs to lead to a 
foregone conclusion. This obtains provided, of course, that 
the combined set of quantities to be observed through ex- 
perimentation falls within the scope of the Heath-Sudderth 
criterion. It may be that P is H-S coherent with bets on 
event E for observations X ;  likewise, P may be H-S co-
herent with bets on E for observations 2,though P is H-S 
incoherent with bets on E for the combined observations 
( X ,2).This is illustrated next. 

Example 2.3. This example is based on example 4.2 in 
earlier work (Schervish et al. 1984), that a mixture of non- 
conglomerable distribution~ may be conglomerable. Let Q 
be a finitely additive probability on the (power set) algebra 
A = { E ,  E c )  x X x { F ,  F c )  where E and F are (binary) 
events and X = {1 ,2 , .. .). Let Q ( E )  = Q ( F ) = .5, and 
assume that Q ( E& F )  = Q ( E ) Q ( F )= .25, so that E and 
F are independent under Q. Let Q ( E ,  X  IF) be as P ( E ,  X )  
in Example 2.1; that is, Q ( E &  X  = klF) = 2-"' and 
Q ( E c & X  = klF) = 0. Finally, let Q ( E & X  = klFc) = 0 
and Q ( E c& X = kIFC)= 2TW1. 

Observe that because E and F are events, there is no issue 
of additivity associated with Q on the four atom subalge- 
bra { E ,  E c )  x { F ,  F C ) .  That is, trivially, Q is H-S coherent 
over this subalgebra. Also, note that the probability Q is 
H-S coherent over the subalgebra {E,E c )  x X .  Specifi-
cally, Q ( E& X = k )  = Q ( E C& X = k )  = 2-"2, and thus 
Q ( E  IX = k )  = Q ( E )= .5 ( k  = 1, . . .). That is, Q is con- 
glomerable in the X partition. Similarly, Q ( F )= Q(FIX = 
k )  = Q(FCIX = k )  = Q ( F C )= .5 (k  = 1 , . . .), and Q is 
H-S coherent over the subalgebra X x { F ,  F c ) .  

However, Q is not conglomerable in the (X,  F ) partition. 
Note that Q ( E ( X= k & F )  = 1 = Q(ECIX= k & FC)(for 
k = 1,. . .), yet Q(E1F) = Q ( E C ( F C )= .5. Thus a bettor 
might display the H-S incoherence in Q by wagering with 
the agent using the agent's conditional "posterior" odds, 
once X is revealed. After X is revealed, the bettor makes 
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a "called-off" gamble b1 on E c , given F, with the amount 
$1 contributed to the stake by the agent against $E wagered 
by the bettor. The agent wins $E in the event that E & F 
occurs. The bettor wins $1 in the event that Ec& F occurs. 
The gamble is called-off in the event that Fc occurs-in 
which case there is no exchange of funds. The bet 6 1  is 
a favorable (conditional) wager from the standpoint of the 
agent's posterior Q odds after X is revealed, because, given 
X , Q ( E I F & X  = k) = l ( k  = 1, . . .). For a second bet, b2, 
after X is revealed, the bettor wins the agent's $1 if E & Fc 
and the agent wins the bettor's $E if EC& FC.The bet 62 
is favorable for the agent because Q(EcIFc & X  = k )  = 

1 ( k  = 1 , . . .). Let B = {bl + b2)  be the conjunction of 
these two bets. B has negative risk regardless whether E or 
ECobtains: 

and 

Thus Q is H-S incoherent over A when both X and F are 
learned, though Q is H-S coherent when either one of X 
or F alone is observed. 

The problem that we see with Heath and Sudderth's ap- 
proach is that, though the agent may use the finitely additive 
probability Q when betting on E given X or when betting 
on E given F, what shall that agent do when the offer is 
made to learn about both X and F when only one is known? 
Knowing X ,  how does the agent assess the value of con- 
ducting an experiment to learn which of { F ,  F c )  obtains? 
Knowing F, how does the agent assess the value of conduct- 
ing 2n experiment to learn X? It seems difficult to insulate 
finitely additive probabilities against the threat of noncon- 
glomerability by trying to determine which quantities may 
be H-S-coherently observed. As the example shows, non- 
conglomerability may surface when several quantities are 
observed, though no proper subset of these quantities causes 
H-S incoherence on its own. An H-S-coherent agent may 
be confronted with evidence for which his or her beliefs no 
longer satisfy H-S coherence. 

3. CLASSICAL TESTING AND BAYESIAN 
INFERENCE TO FOREGONE CONCLUSIONS 

In Section 1 we recalled the familiar concern that with 
classical hypothesis testing, optional stopping opens the 
door to foregone conclusions when classical (i.e., fixed sam- 
ple size) significance levels are used to report evidential im- 
port. We have seen how the fear of sampling to a foregone 
conclusion can be alleviated within the (countably additive) 
Bayesian paradigm. In short, there are bounds on how high 
the probability can be of sampling until the posterior prob- 
ability reaches a specified level. 

At first, these two results may seem to conflict with the 
observation that many fixed sample size classical proce- 
dures are Bayes or nearly Bayes procedures. For example, 
with normal data X N N ( 0 ,  1 )  and the usual improper prior, 
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the posterior probability that O 5 Oo given X is the same as 
the significance level for testing the hypothesis that O 5 00 
against the alternative O > Qo. If sequential significance 
testing with a fixed sample size tests leads to foregone con- 
clusions, is not the same true for the Bayes procedures? 

A naive response might be that the improper prior cor- 
responds to a finitely additive prior; hence foregone con- 
clusions are not ruled out in that case, as we discussed in 
Section 2. However, in this particular case, the posterior in- 
ferences are coherent in the sense of Heath and Sudderth 
(1978), so no foregone conclusions are possible. That is, 
the apparent conflict is not attributable to the mere finite 
additivity of the probability as represented by the improper 
prior. 

To sort our what is happening, note that we have stated 
the problem as one in which sampling continues until the 
posterior probability of the null hypothesis H: O 5 00 rises 
above a specified level. It can be shown that given O = 0 5 
Qo,  the probability is 1 that such a sampling scheme will 
stop and assign a high posterior probability to the true null 
hypothesis. This is true whether one uses the usual improper 
(finitely additive) prior or a conjugate proper prior. Also, it 
can be shown that for these same priors, given O = 0 > 00,  
the probability is less than 1 that the sampling scheme will 
stop and assign a high posterior probability to the false null 
hypothesis. But if we modify the hypotheses and move the 
endpoint Bo into the alternative hypothesis, then, conditional 
on O = Qo, there is probability 1 that the sampling scheme 
will stop and declare that the probability is high for the 
false null hypothesis O < Bo. This case allows a foregone 
conclusion. Of course, each of the prior distributions used 
in this analysis puts zero probability on the event O = 00.  

If one is particularly concerned about the possibility that 
O = Oo (as opposed to O being very close to Qo), then one 
can avoid the foregone conclusion just mentioned by using 
a countably additive prior probability that puts sufficient 
mass at O = go; for example, let P ( O  = 0 0 )  > p ( l  - q ) / q .  
This will ensure that the conditional probability given O = 
Oo is strictly less than 1 for stopping and declaring that 
the posterior probability of the false hypothesis O < 00 is 
high. Of course, with this changed prior, the stopping rule 
(based on the posterior) no longer is to sample until O < QO 

achieves a preassigned classical significance level. That is 
our resolution to the earlier puzzle. 

Note also that a similar problem does not arise in the two- 
sided case, because the usual fixed sample size significance 
levels are not posterior probabilities, as Jeffreys discussed 
many years ago (1939, sec. 5.1). (See Lindley 1957 for addi- 
tional commentary.) And for the special case of a point-null 
hypothesis with a two sided alternative, when improper pri- 
ors are used for the adjustable parameter of the alternative, 
it can happen that there is a foregone conclusion for the null 
hypothesis with only one observation. (See Jeffreys' 1939, 
p. 251, for an analysis.) 

4. SUMMARY 

In Section 1 we displayed some elementary reasoning, 
based on the law of total probability, about the protection 
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simple Bayesian theory affords against sampling to a fore-
gone conclusion. However, Example 1.1alerts us to the pos-
sibility of foregone conclusions when inference is based on 
an improper prior. In Section 2 we explored limitations on 
the results from Section 1 that arise from using a finitely, 
but not countably additive, probability corresponding to an 
improper prior. We considered three perspectives on finitely 
additive probabilities: 

where foregone conclusions are avoided by strictly 
preferring; that is, paying to choose "now" rather than 
to collect "cost-free" evidence 
where foregone conclusions are avoided by mandating 
against the use of Bayes's rule for updating probabil-
ities, as in Goldstein's theory 
where foregone conclusions are avoided by trying to 
circumscribe the partitions in which nonconglomer-
ability appears, as in Heath-Sudderth coherence. 

Each of these viewpoints carries a price for relaxing the 
principle of countably additivity. 

Of course, there is a fourth perspective which also 
avoids foregone conclusions. This is to proscribe the use 
of merely finitely additive probabilities altogether. The cost 
here would be an inability to use improper priors. These 
have been found to be useful for various purposes, including 
reconstructing some basic "classical" inferences, affording 
"minimax" solutions in statistical decisions when the pa-
rameter space is infinite, approximating "ignorance" when 
the improper distribution is a limit of natural conjugate pri-
ors, and modeling what appear to be natural states of belief 
(Kadane and O'Hagan 1995). 

Whether in each case the price is too high is a question 
for further investigation and serious debate. We need to 
discuss the extent to which Bayesian methodology affords 
or ought to afford protection against reasoning to a foregone 
conclusion. 

[Received August 1994. Revised October 1995.1 
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